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Abstract. X-ray scattering close to the lock-in temperatureTL has been measured as a function
of temperature to investigate whether the discommensuration lattice is a useful description of the
structure of Rb2ZnCl4. We review different models for the incommensurate structure and discuss
how they might be distinguished by a scattering experiment. Our results are compared with earlier
published x-ray measurements and with those obtained from nuclear spin-resonance techniques.
All of the x-ray results suggest that higher harmonics of the scattering measured in thea∗/c∗
andb∗/c∗ planes are much weaker than predicted by the abrupt-discommensuration model. We
conclude from the measurements that this theory does not provide an adequate description of the
experimental results close to the lock-in transition.

1. Introduction

Rubidium tetrachlorozincate, Rb2ZnCl4, on cooling to a temperatureTI ≈ 303 K undergoes
a structural phase transition from a paraelectric normal (regular) phase to a phase which is
incommensurably modulated. On further cooling, the wave vector of the incommensurate
modulation changes until it locks in to a commensurate wave vector atTL ≈ 192 K, and the
structure becomes a commensurate ferroelectric phase [1, 2]. There is now a generally good
understanding of the structure and properties of Rb2ZnCl4 at temperatures close toTI [3]. The
critical phenomena have been measured [4,5], and the results for the temperature dependence
of primary and secondary order parameters are in accord with theoretical expectations.

The situation is much less satisfactory close to the lock-in transition temperature,TL.
There is an appealingly simple picture of the transition in Rb2ZnCl4 and in other materials
with similar phase transitions as arising from an instability of the low-temperature phase against
the spontaneous creation of discommensurations (also termed solitons, domain walls, phase
distortions or phase dislocations) [6]. The structure of the incommensurate phase is predicted to
consist of regions of constant phaseϕ (the commensurate regions) separated by equally spaced
regions of rapidly changing phase (the discommensurations) in whichϕ changes by 2π/p (p is
an integer, such thatpqc = GwhereG is a reciprocal-lattice vector andqc is the commensurate
wave vector to which the lock-in transition actually takes place); the spacing between the
discommensurations steadily increases and consequently their concentration decreases asTL
is approached from above [6–8]. The basic assumption of the discommensuration description
is that the displacements of the atoms can be represented in terms of an amplitudeA(r) and
phaseϕ(r) as

U(r) = A(r) cos(qc · r + ϕ(r))
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where the lattice vectorr hasx-,y-, z-components. This type of theory has been very successful
in describing the properties of lattice strained epilayers and of two-dimensional films [9], but
its usefulness in describing incommensurably modulated phases in three-dimensional crystals
is not yet established. The reason for the uncertainty is that a regular discommensuration
lattice gives rise to a characteristic diffraction pattern [10] which has not yet been observed
[11] although electron microscopy [12, 13] and nuclear magnetic resonance results [14–16]
have been interpreted as providing evidence for the existence of the discommensurations in
Rb2ZnCl4.

The detailed structure of the modulated phase in Rb2ZnCl4 has been determined from
neutron [17, 18] and x-ray scattering [11, 19–26] measurements of the intensities of the first-
order incommensurate peaks. In this paper our intention is to re-examine the x-ray scattering
close toTL to investigate whether the discommensuration lattice is a useful description of the
structure of materials close to the lock-in type of phase transition. In the next section we review
different models for the incommensurate structure and how they might be distinguished by a
scattering experiment. Predictions of the theory will be compared in section 3 with our x-ray
scattering experiments performed on Rb2ZnCl4. We shall show that a discommensuration
lattice is not an appropriate description of the experimental results. In section 4 these results
are compared with the x-ray measurements of others and with those obtained from nuclear
spin-resonance techniques, and finally the results are summarized in section 5.

2. Scattering from incommensurably modulated phases

At high temperatures, aboveTI , the atoms are situated at the positionsR(νµ), where the label
ν describes the unit cell,µ labels theµth type of atom within the unit cell and

R(νµ) = R(ν) +R(µ). (1)

The atoms are displaced from these positions in the incommensurably modulated phase
by displacements which can be written in the form

U(νµ) =
∞∑
n=0

u(nµ) sin(nq ·R(ν) +8(nµ)) (2)

where we have assumed a one-dimensional modulation described by a wave vectorq, and the
u(nµ) are the real amplitudes of the Fourier coefficients of the displacements and the8(nµ)

are the phases of the displacements. In principle the phases of the displacements depend on the
component of the displacement, and differ forUx ,Uy andUz. In the interests of simplicity we
have not included these suffices but they are readily included in the theory. The unusual features
of an incommensurate crystal are that all of the displacements,U(νµ), are different and that
in principle there are an infinite number of amplitudesu(nµ) and phases8(nµ) needed to
describe the displacements. Nevertheless the sum in equation (2) is usually dominated by a
few low-order terms inn.

We follow first the interpretation by Perez-Matoet al [27] to develop the theory in the
three-dimensional space. We introduce a new variablev = q ·R(ν) which is similar to the
continuous ‘internal’ variable used by Perez-Matoet al. U(vµ) is periodic inv with a period
of 2π and so we only need to consider the values ofv between 0 and 2π . If the wave vectorq
is incommensurate, the values ofv form a discrete set between 0 and 2π .

The structure factor amplitude for the scattering for a wave-vector transferQ is given by

F(Q) = 1

N

∑
νµ

f µ(Q) exp[iQ · (R(νµ) +U(νµ))] (3)
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wheref µ(Q) is the x-ray form factor or coherent neutron scattering length of an atom of typeµ,
andN is the number of unit cells in the high-temperature structure. The structure factor for a
wave-vector transfer,Q = G+mq, withG a reciprocal-lattice vector of the high-temperature
structure is then [27]

F(Q) =
∑
µ

f µ(Q)gµ(Q) exp(iQ ·R(µ)) (4)

where the ‘atomic modulation factor’ is

gµ(Q) = 1

2π

∫ 2π

0
exp[i(Q ·U(vµ) +mv)] dv (5)

wherem is an integer and denotes an index of an incommensurate Bragg reflection. To simplify
the analysis we have neglected thermal motions, but the effect of the Debye–Waller factor will
be discussed briefly in section 4. We rewrite equation (5) as

gµ(Q) = 1

2π

∫ 2π

0

(
1 + iQ ·U(vµ)− (Q ·U(vµ))

2

2
+ · · ·

)
exp(imv) dv. (6)

When equation (2) is then substituted into equation (6), the term of first order in the
displacement becomes

g
µ

1 (Q) = −
1

2

∞∑
n=0

Q · u(nµ)
[
δ(n +m) exp(i8(nµ))− δ(n−m) exp(−i8(nµ))

]
. (7)

The result suggests that the intensity of themth-order satellite withQ = G + mq is given
by the square ofmth-order displacements|u(mµ)|2. Unfortunately the situation is more
complex as can be seen by considering the quadratic term in the expansion, equation (6).
When equation (2) is substituted into this term and the integration overv performed, the
results are the delta functionsδ(n1 + n2 ±m), wheren1 andn2 are the indices resulting from
the expansion of the twoU(νµ) in terms ofn Fourier components. As a result there is a
contribution to, say,m = 1 whenn1 = −2 andn2 = 1. Extension of this analysis then leads
to the conclusion that, in principle, all Fourier coefficients contribute to the intensity of every
incommensurate reflection and that consequently the analysis becomes extremely complex.

Progress can be made only if approximations are made. One approximation is to assume
that the amplitude of the Fourier components decreases rapidly withn so that only the leading
terms need to be considered for any incommensurate peak. Form = 1 the leading term has
n = ±1, while form = 2 there are two types of term: one from the first-order term in
equation (6) which hasn = ±2, and other from the second term which hasn1 = n2 = ±1.
The former is the scattering from the second-order distortion and the latter is that from the
second diffraction harmonic of the first-order distortion. These different contributions make
the analysis of the diffraction pattern from incommensurate phases very difficult to interpret
for the peaks with|m| > 1. Indeed, there have been only a few attempts to extract the
second- and higher-order displacementsu(nµ) for n > 1 [28]. The situation is simpler
for magnetic systems [29], because in this case the magnetic scattering of neutrons does not
produce the diffraction harmonics and the cross section is similar to that given by the small-
U approximation of equation (7). Equation (6) shows that the relative contributions of the
diffraction harmonics and higher-order displacements depend differently on the wave-vector
transferQ. The contributions to the structure factor form = 2 vary as|Q|2 for the primary
order parametern1 = n2 = ±1 and as|Q| for the secondary order parametern = ±2. The
diffraction harmonics will then tend to be the largest contribution to the scattering for large
|Q| while the secondary order parameters dominate for small|Q|.
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Another approximation is based on using the Jacobi–Anger generating function for the
Bessel function:

exp(ix sinp) =
∞∑

M=−∞
exp(iMp)JM(x) (8)

whereJM(x) is theMth-order Bessel function. This expansion is an alternative to the direct
expansion of the exponential for smallx used to obtain equation (6). When equation (2) is
substituted into equation (5) and the identity (8) is used, then

gµ(Q) =
∫ 2π

0

∞∏
n=0

[
+∞∑

M=−∞
JM(Q · u(nµ)) exp[iM(nv +8(nµ))]

]
exp(imv) dv. (9)

The two approaches both lead to an infinite series of terms but differ in the way in which
higher-order terms are incorporated. It isa priori unclear for which expansion the lowest-order
terms give the best approximation to the scattering.

Another approach which has been developed for use close to the lock-in transition [6, 7]
is that of describing the displacements in the incommensurate phase in terms of those of the
commensuratelock-in phase. The displacements are then a homogeneous modification of the
displacements of the lock-in phase. We shall assume for simplicity that the displacements of
the commensurate phase are described in terms of a single wave vector,qc, and are given by

Uc(νµ) = uc(µ) sin(qc ·R(ν) +8c(µ)) (10)

whereuc(µ) and8c(µ) are the amplitudes and phases, similar to those introduced in equ-
ation (2). The commensurate phase hasp different domains whose structures differ only in
that the phases of the displacements are all increased by multiples of 2π/p.

The structure of theincommensuratephase consists of a regular sequence of these domains
separated from one another by phase discommensurations. Each discommensuration has a
widthλ and a phase change by 2π/p across the discommensuration, and is separated from the
next discommensurations by on average the distanceb. A displacement pattern of this form
can be written as

Uc(νµ) = A(ν)uc(µ) sin(qc ·R(ν) + ϕ(ν) +8c(µ)) (11)

whereϕ(ν) is the variation of the phase of the commensurate distortion across each unit cell
andA(ν) is the variation of the amplitude. The basic assumption of the method is thatA(ν) and
ϕ(ν) do not depend on the atom typeµ, and hence the system can be treated as a continuum.
There have been many calculations of the variation ofA(ν) andϕ(ν) beginning with the work
of McMillan [6] and of Bak and Emery [7] and continuing later [8,30]. We shall review only
the relevant results. Firstly the amplitude variations are small and relatively unimportant so we
may neglect them [31]. Secondly if the phase increases by 2π/p across discommensurations
separated by a distanceb in the direction ofqc, which we shall take as thez-axis, then [10]

ϕ(z) = ϕ0 +
2π

p
J +9(z− Jb) (12)

whereJ is the integer closest toz/b, ϕ0 is a constant and9(z) is the solution for the shape of
a single discommensuration which can be obtained from the sine–Gordon equation [32] as

9(z) = 4

p
tan−1(exp(z/λ)). (13)

As T → TL the number of the discommensurations decreases, sob increases while the width
of the discommensurations,λ, varies only slightly.
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Table 1. The positions and indexing of the incommensurate reflections of Rb2ZnCl4. h, k, l are
the Miller indices;ξ is the position of the satellites in ac∗-direction.

Position(δ = 0.0169) G±m( 1
3 − δ)c∗ G±m( 2

3 + δ)c∗

h k ξ ± l m ± l m

6 0 0 + 0 0 + 0 0
6 0 0.5315 + −2 8 + 6 −8
6 0 0.5822 + −1 5 + 4 −5
6 0 0.6329 + 0 2 + 2 −2
6 0 0.6836 + 1 −1 + 0 1
6 0 0.7343 + 2 −4 + −2 4
6 0 0.7850 + 3 −7 + −4 7
6 0 1 + 1 0
6 0 1.2150 + −1 7 − 6 −7
6 0 1.2657 + 0 4 − 4 −4
6 0 1.3164 + 1 1 − 2 −1
6 0 1.3671 + 2 −2 − 0 2
6 0 1.4178 + 3 −5 − −2 5
6 0 1.4685 + 4 −8 − −4 8
6 0 2 + 1 0 + 2 0

Position(δ = 0.0169) G± ( 1
3 − δ(1 + 3I ))c∗ G± ( 2

3 + δ(1 + 3I ))c∗

h k ξ ± l I ± l I

6 0 0 + 0 0 + 0 0
6 0 0.5315 − 1 −3 + 0 −3
6 0 0.5822 − 1 −2 + 0 −2
6 0 0.6329 − 1 −1 + 0 −1
6 0 0.6836 − 1 0 + 0 0
6 0 0.7343 − 1 1 + 0 1
6 0 0.7850 − 1 2 + 0 2
6 0 1
6 0 1.2150 + 1 2 − 2 2
6 0 1.2657 + 1 1 − 2 1
6 0 1.3164 + 1 0 − 2 0
6 0 1.3671 + 1 −1 − 2 −1
6 0 1.4178 + 1 −2 − 2 −2
6 0 1.4685 + 1 −3 − 2 −3
6 0 2

The structure factor for the scattering can be calculated by substituting equations (12) and
(13) into equation (11) and hence into equation (5). The results are necessarily complex and
can only be evaluated numerically.

Alternatively, the expansion of equation (5) for small displacements can be used when the
summations can be performed analytically. Firstly scattering occurs when [10]

Q = G± qc(1− δp(1 + Ip)) (14)

whereI is any positive or negative integer,δ = ±c/b is the small ‘mismatch parameter’ and the
positive sign is taken if the discommensurations advance the phase at each discommensuration
along the crystal. If this theory is valid,b is large, and the intensity is largest forI = 0 and
the scattering occurs at wave vectors around each particular lock-in wave vector. They are
the same wave vectors as occurred in the previous description of the scattering. In the former
description the wave-vector transfer of themth-order satellite hasQ = G ± mqm, where for
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Rb2ZnCl4 [11, 23] the modulation wave vector isqm = ( 1
3 − δ)c∗. The discommensuration

analysis gives the wave-vector transfers asQ = G±( 1
3 − δ(1 + 3I ))c∗ becausep = 3 and

qc = 1
3c
∗ for Rb2ZnCl4; bothm andI are integers. In table 1 we list the correspondence

between the two labellings for some of the scattering wave vectors observed for Rb2ZnCl4.
An expression for the atomic modulation factor can be obtained from the first term in

equation (6) as

gµ(Q) = −1

2
(Q · uc(µ)) exp(±i8c(µ))F (Q−G± qc) (15)

whereF(Q) is the form factor of the discommensuration [10]:

F(Q) = 1

b

∫ b/2

−b/2
exp(iQz−9(z)) dz (16)

which depends on the structure of the discommensuration, but close toTL the theory gives
b � λ, the abrupt-discommensuration limit, whenF(Q) can be approximated as [10]

F(Q) =
[
π

(
1

p
+ I

)]−1

sin

(
π

p

)
exp

(
− iπ

p

)
. (17)

Since this theory is appropriate only ifb is large and the wave vectorsQ −G are close
to qc, the relative intensity of the scattering for different integers,I , is determined by the form
factors of the discommensurations given by equation (17). Since this factor is the same for
all reciprocal-lattice vectors,G, this model predicts that the relative intensities of the different
scattering peaks are the same around each reciprocal-lattice vector. Furthermore, since the
model is valid only ifb is much larger thanλ, equations (16) and (17) predict forp = 3 that
the relative intensities forI = −2,−1, 0, 1, 2 are 1

25: 1
4:1: 1

16: 1
49.

This approach has assumed that the distortions are small so that the exponential can be
expanded only to first-order terms, and has used an approximate way of calculating all of the
higher-order distortionsU(nµ) in equation (2).

2.1. Superspace formalism and intensity calculation

The theory and calculations for incommensurably modulated crystals are conveniently
performed using superspace groups as developed by de Wolff, Janner and Janssen [33–35],
and by Yamamoto and Nakazawa [36, 37]. The development is equivalent to that of Perez-
Mato et al [27] but for completeness we give the more general expressions needed for our
numerical calculations for Rb2ZnCl4 . If there is a single incommensurate wave vectorqm and
the occupation probability of each site is one, the intensity expression given by Yamamoto can
be written as

F(hklm) =
∑
µ,(R|τ)

∫ 1

0
dx̄µ4 f

µ(H) exp{−6π2Uµ
eq + 2π iH([R]xµ(x̄µ4 ) + τµ)} (18)

whereµ runs over all non-equivalent atoms. In this expression the wave-vector transferH ≡
Q/2π is specified by the four-dimensional vector of integersH = (hklh4) = (h1h2h3h4)

andf µ(H) is the atomic form factor written earlier asf µ(Q). Bµeq is the isotropic thermal
parameter.

The positions of the atoms are written in terms of the coordinates along the basis vectors,
ai , of the four-dimensional space and so fori = 1, 2, 3

x
µ

i ai = Ri(µ) + ui(vµ) (19)
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while for i = 4

x̄
µ

4 =
v

2π
+

1

2π
q · u(vµ). (20)

Substitution of these results into equation (18) and neglect of the Debye–Waller factor
gives an expression which is identical to that given in equation (4).

The high-temperature space group of Rb2ZnCl4 is Pmcn and the modulation wave vector
q is along thec-directionq = (0, 0, ξ). The superspace group of the modulated phase is
P
Pmcn

ss1̄
[23], and there are six non-equivalent atoms in the unit cell. The coordinates of the

equivalent atoms are given by [38]:

x, y, z, w − x +
1

2
,−y +

1

2
, z +

1

2
, w

x +
1

2
,−y,−z,−w +

1

2
− x, y +

1

2
,−z +

1

2
,−w +

1

2

−x,−y,−z,−w x +
1

2
, y +

1

2
,−z +

1

2
,−w

−x +
1

2
, y, z, w +

1

2
x,−y +

1

2
, z +

1

2
, w +

1

2
.

The symmetry of the modulated structure imposes conditions on the Bragg reflections, as given
by Yamamoto [38]:

h = 2n for h000

k = 2n for 0k00

h + k = 2n for hk00

l = 2n for 00lm

m = 2n for 0klm

l +m = 2n for h0lm

wherem ≡ h4 is the indexm of the Bragg reflectionQ = G+mq as given in the first column
of table 1. The experimental measurements were mostly performed with the scattering vector
in the (h0l) plane, for which case the conditions on the reflections show that for reflections
in that plane the unit cell in the high-temperature phase can be treated as being of lengthc/2,
and the modulation wave vector asq = (0, 0, 1− ξ). The indices for the reflections labelled
in this way are listed in columns 2 and 4 of table 1.

The lowest-order(n = 1) displacements of the atoms in the modulated phase were
determined [23] in the form

u(µv) = aµ0 /2 +aµ1 cos(v) + bµ1 sin(v) (21)

which is an alternative form of equation (2) but with the amplitude and phase written in terms
of cosines and sines. The intensities of the Bragg reflections form = 0 and 1 and of the
corresponding diffraction harmonics for largerm were calculated by substituting equation
(21) into equation (18) and using the symmetry to sum over all of the atoms in the unit cell.

3. Experimental measurements

3.1. The sample

The sample chosen for a study of the structure of the incommensurate phases was Rb2ZnCl4.
Large single crystals are available, the incommensurate phase occurs over a wide and con-
venient temperature range and there have been many other studies of this material. The crystals
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Figure 1. The temperature variation of the intensities observed for wave vectors 40L on cooling
towardsTL.

used were grown by Dr J Y Gesland at the Université du Maine and by Dr K Hamano at the
Tokyo Institute of Technology and were previously studied at temperatures close toTI [5]. The
crystals had a mosaic spread of about 0.01◦. The crystal structure in the high-temperature phase
has lattice constants measured at 200 K asa = 0.7253 nm,b = 1.2670 nm andc = 0.9221 nm.
The incommensurate wave vector is alongc∗ and in the locked-in commensurate phase below
192 K,qc is 1

3c
∗.

Experimental measurements were made in the extended-face geometry with faces perp-
endicular to either theb∗- or a∗-directions. In the former case the scattered intensities were
measured in thea∗/c∗ plane and in the latter case in theb∗/c∗ plane.

3.2. The x-ray measurements

The x-ray source was a Stoe rotating anode with a Cu target operating at 6 kW. The collimations
of the incident and scattered beams were both controlled by pyrolytic graphite crystals reflecting
from the(0002)h plane. This arrangement gave a high flux which enabled weak reflections to
be measured but sufficient resolution to separate the different satellite reflections.

The samples were mounted in a closed-cycle cryostat and aligned with either theh0l or
0kl reflections in the scattering plane of a two-axis diffractometer. Silicon diode temperature
sensors were used to control the temperature with an absolute accuracy of±0.5 K. A
temperature controller gave the stability of the temperature control to±2.5 mK. The software
was designed so as to give a smooth temperature change and such that the temperature has an
overshoot of less than 0.1 K.

The diffractometer was controlled by SPEC software and the wave-vector transferQ was
scanned forξ along the lines(h0ξ) or (0kξ) for the accessible regions of reciprocal space.



The absence of a discommensuration lattice in Rb2ZnCl4 1647

0.4 0.5 0.6 0.7 0.8 0.9

δ=0

δ=0.0112

δ=0.0154

δ=0.0189

 T=187.49 K
 T=193.4 K
 T=194.55 K
 T=198.05 K

In
te

ns
ity

 (
a.

u.
)

[60.L]

-1.8 -1.7 -1.6

δ=0.0083

δ=0.0090

δ=0.0220

δ=0.0252

 T=174 K
 T=176 K
 T=180 K
 T=186 K

In
te

ns
ity

 (
a.

u.
)

[08.L]

Figure 2. The temperature variation of the intensity of
the 60L satellite reflections (sample 1).

Figure 3. The temperature variation of the intensity of
the 08L satellite reflections (sample 2).

Table 2. The ratio of the satellite intensities atT = 195.54 K. h, k, l are the Miller indices;I has
the same meaning as in table 1.

Observed/
Indices calculated +/− I (−2)/I (0) I (−1)/I (0) I (0) I (1)/I (0) I (2)/I (0)

400 Observed − 0.0151 0.0134 577 0.0023 0.0014
Calculated 10−6 0.0043 10−5 10−10

402̄ Observed + — 4.72 18 0.0011 —
Calculated 10−5 2.2899 0.0017 10−9

502̄ Observed − 0.011 0.0865 173 0.0092 —
Calculated 10−4 0.5 0.0041 10−7

600 Observed + 0.0085 0.012 1106 0.0048 0.0039
Calculated 10−5 0.0028 10−4 10−8

600 Observed − 0.0093 0.014 1638 0.0027 0.0038
Calculated 10−5 0.0028 10−4 10−8

602̄ Observed + 0.009 0.11 387 0.0089 0.0048
Calculated 10−4 0.51 0.0022 10−7

Discommensuration Calculated 0.04 0.25 1 0.0625 0.0204
model

Typical results at several different temperatures are shown in figure 1, and it is clear that the
relative intensities of the satellites are not changing rapidly with temperature as the sample is
cooled towardsTL. The diffracted intensities were measured at 16 different temperatures in
the range 210–172 K on cooling. Because there was evidence for the commensurate phase and
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incommensurate phase coexisting close toTL, most of the measurements were made between
193 and 200 K and some distributions of the intensity for the(h0l) plane are shown in figure 2
and for the(0kl) plane in figure 3.

The results in figure 2 show a sequence of satellite peaks around each of the lock-in wave
vectors. These peaks were fitted to pseudo-Voigt function (which is linear convolution of a
Gaussian and a Lorentzian) to obtain the integrated intensities and the results are listed in
table 2 giving the intensity for the most intense peak,I = 0, and the ratios of the intensities
of the satellite peaks withI = ±1 and±2 to the intensity of theI = 0 peak. Since all of the
peaks in each group have similar wave-vector transfers, the Lorentz, polarization, absorption,
form factors and geometrical corrections are similar within each group of peaks.

Table 3. The ratio of satellite intensities atT = 186 K. h, k, l are the Miller indices;ξ is the
position of the satellites in thec∗-direction;m has the same meaning as in table 1.

Position(δ = 0.0252) Intensity

h k ξ hklm Measured Calculated

0 8 −1 08̄10 12743 8250
0 8 −1.2325 080̄4 14 0.05
0 8 −1.3837 08̄22 38 0.25
0 8 −1.6163 08̄12̄ 138 126
0 8 −1.7675 08̄34 10 0.04
0 8 −2 082̄0 6089 8389
0 8 −2.3837 08̄32 40 23
0 9 −0.6163 090̄2 15 0.09
0 9 −0.7675 09̄24 5 0.03
0 9 −1 09̄10 21375 20424
0 9 −1.2325 09̄40 9 0.02
0 9 −1.3837 09̄22 84 11
0 9 −1.6163 09̄12̄ 59 18
0 9 −2 092̄0 30352 32384
0 10 0 0 10 00 23551 28228
0 10 −0.3837 0 10̄12 7 27
0 10 −0.6163 0 10 0̄2 126 73
0 10 −1 0 101̄0 3524 3689
0 10 −1.3837 0 10̄22 51 48
0 10 −1.6163 0 10̄12̄ 7 43
0 10 −2 0 102̄0 697 471
0 12 −2 0 122̄0 356 358
0 12 −2.3837 0 12̄32 53 3
0 12 −2.6163 0 12̄22̄ 118 23
0 12 −2.7675 0 12̄44 24 0.03
0 12 −3 0 123̄0 1136 1125

Figure 3 and table 3 show the results for the(0kl) plane. In this plane the symmetry of
the primary distortions is such that the structure factor for the satellite reflections is zero for
Q = G±mq, whenm is odd. Consequently the only satellite reflections expected are those
with m even and in the other notation withI odd. The results in figure 3 show that there is a
peak withξ ≈ −1.69 corresponding tom = 1 or I = 0 but that it is weaker than theI = −1
peak withξ ≈ −1.62. We consider that the former peak may arise from multiple scattering
and illustrates the difficulty of reliably measuring weak satellite intensities. The intensities of
the reflections observed along the lines(0kξ) with k = 12, 10, 9 and 8 are listed in table 3.
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The samples used for the measurements in thea∗/c∗ and thea∗/b∗ planes are of different
origin. In the first case, the temperature of the lock-in transition was about 192 K while in the
second one it was about 178 K. This discrepancy could be due to different concentrations of
impurities or defects in the samples. A lower transition temperature has been ascribed to the
presence of defects [25,39,40].

It is difficult to estimate the errors of the experimental results in tables 2 and 3. Accurately
measuring intensities which differ by orders of magnitude is extremely difficult because the
most intense peaks may be reduced by extinction while multiple scattering may contribute to
the intensities of the weak peaks. Both of these effects tend to reduce the differences between
the measured intensities of the strong and weak reflections.

3.3. The results

The most important aspect of our results is summarized in table 2. The model of the scattering
provided by the discommensuration theory combined with the expansion of the exponential in
equation (5) for smallU(vµ) gives the result that the ratiosI (−2)/I (0), . . . , I (2)/I (0) are
the same for all of the groups of satellite reflections. The results, table 2, show that this is not
the case, becauseI (−1)/I (0) varies between 4.7 and 0.013 whileI (1)/I (0) varies between
0.009 and 0.0011.

One reason for this discrepancy is the presence of the diffraction harmonics of the primary
distortion. For example, the scattering from theI = −1,m = 2 satellite has a contribution from
the second diffraction harmonic as well as from the second-order distortions. The intensities
of the diffraction harmonics have been calculated using the modulated structure determined
by Hedouxet al [23] at 210 K and the ratios of the intensities calculated assuming a perfectly
sinusoidal displacement pattern are listed in table 2.

The results show that the second-order diffraction harmonics can be larger than the first-
order harmonics as illustrated by the 402̄+ group of reflections in table 2. In this case the
I (−1) intensity corresponds to them = −2 reflection of the strong primary reflection 4001̄
of column 2 of table 1. This primary reflection is very strong and so it is not surprising that
the 400̄2 harmonic is larger than the weaker 402̄1 primary reflection. Indeed the calculations
suggest that whenever a primary reflectionm = ±1 is strong, the higher harmonics of these
reflections are also strong.

In view of this the groups of satellites having the largest primary structure factors are those
which might give evidence for a discommensuration lattice especially if the primary satellites
of the neighbouring Bragg reflections are weak. This is the case for the strong(400) and
(600) groups of reflections. In both cases the ratiosI (−1)/I (0) are between 0.012 and 0.014,
I (1)/I (0) is less than 0.0048 andI (−2)/I (0) varies between 0.0151 and 0.0085. These ratios
are all much smaller than those calculated for the abrupt-discommensuration model described
in section 2: 0.25 for I (−1)/I (0), 0.0625 forI (1)/I (0) and 0.04 for I (−2)/I (0).

We conclude from this analysis that:

(a) the diffraction harmonics may play an important role, particularly for those reflections
that generally have a low intensity;

(b) the abrupt-discommensuration model in which the width of the discommensurations,λ,
is much less than their spacing,b, does not describe the data and a description with a
common phase8(z) is only possible if the higher harmonics are much smaller than those
given by that model.

Table 3 shows the measurements obtained for the intensities in the other plane(0kl). In this
plane the first-order primary satellites withm = 1 are absent and so on the basis of the simplest
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discommensuration model, the satellite scattering should be absent. The results show that there
is significant scattering. Table 3 also compares the observed scattering with that calculated
using them = 1 distortions found by Hedouxet al [23] where the calculated intensities
have been scaled to give a reasonable description of the observed intensities along each line
in reciprocal space. The intensities of the most intense 2q satellites are then reasonably
reproduced by the calculations for the line withk = 10, but for the other values ofk the
calculated intensities are significantly weaker than those observed, as are the 4q satellites.
This is evidence that higher-order distortions are needed to describe the scattering and that
these cannot be described by the discommensuration model.

4. Discussion of the results

4.1. The x-ray scattering from Rb2ZnCl4

The x-ray scattering from Rb2ZnCl4 has previously been studied by Andrews and Mashiyama
[11] and by Aramburuet al [26]. The former measured the satellites near the 600+ reflections
while the latter measured the satellites between 600 and 604 and near 400+. All of the
experimental results are similar to ours, except that their measurements were performed over a
wider range of temperatures but only in more restricted areas of reciprocal space. Both groups
of authors deduced exponents for the temperature dependence of the satellites(TI − T )2β , but
except for the most intense satellite the data are too far fromTI to give reliable exponents [5].

Aramburuet al [26] model the data near the lock-in transition,TL, in terms of a dis-
commensuration model similar to that which we have used with an additional term to describe
the third-harmonic 3q satellites which we also observed but have not discussed in detail.
Aramburuet al [26] also used the structure determination of the modulated structure by
Hedouxet al [23] to give the primary distortions and then modulated that distortion by an
amplitudeA0 and a discommensuration densityns which is the ratio of the volume of crystal
in the discommensurations to the total volume. It is given in our notation in terms of the
discommensuration widthλ and spacingb asns = πλ/b. The discommensuration model then
predicts that close to the lock-in transition,b→∞ whileλ is independent of temperature and
sons → 0, while the abrupt-discommensuration model is valid close to the lock-in transition.

Aramburuet al [26] fit this model to their observed intensities and find thatns decreases
only slowly on approachingTL and even close toTL, ns is about 0.25 as shown in figure 4. This
is because their measurements gave higher harmonics with intensities smaller than predicted
by the abrupt-discommensuration model as found in our measurements as well (section 3).

We conclude that all of the x-ray measurements on Rb2ZnCl4 show that the abrupt-dis-
commensuration model does not provide an adequate description of the experimental results
close to the lock-in transition. The higher harmonics of the scattering are much weaker than
predicted by the theory.

4.2. Resonance measurements

Magnetic resonance techniques are a probe of the local environment of magnetic ions and have
been used to study the properties of many incommensurate materials. If the modulated structure
is described by a plane wave the most probable resonance frequencies are those associated with
the extrema of the displacements. In contrast, the most probable resonance frequencies for a
discommensuration structure are the commensurate lines. It is therefore possible to distinguish
between the two models from resonance measurements [14, 41]. Unfortunately this is more
complex in practice because the resonance frequency may depend on both linear and quadratic
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Figure 4. The temperature dependence of the discommensuration densityns as determined by
magnetic resonance techniques by Blincet al [42] (1) and by x-ray scattering by Aramburuet al
[26] (2) and of the misfit parameterδ as determined for sample 1 (3).

terms in the displacements of the atoms, and because there are a large number of unknown
parameters. Initially the interpretation [41] of the data for Rb2ZnCl4 suggested thatns → 0 as
T → TL, but a fuller more detailed study [42] of the full line-shape suggested thatns ≈ 0.4 at
TL; the temperature variation is shown in figure 4. Also shown in figure 4 are our measurements
of the misfit parameterδ = 1/pb as a function of temperature. The figure shows firstly that the
values ofns deduced by Aramburuet al [26] from their x-ray measurements are considerably
different from those obtained from resonance measurements [42]. This is indicative of the
difficulty of determiningns when the abrupt-discommensuration model is not adequate. The
second aspect of figure 4 is illustrated by figure 5 which gives the temperature dependence of
the discommensuration width as deduced fromns/δ using the resonance data forns and our
measurements forδ. Figure 5 shows that, within the error,λ is independent of temperature and
has the value of either(0.57±0.1)c or (0.27±0.05)c depending on which set of measurements
of ns (figure 4) is used to determineλ.
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Figure 6. The spatial variation of the phase angle for different discommensuration densitiesns .
The solid curve is a single-Fourier-component fit to the line withns = 0.3.

These results suggest that the higher harmonics are much smaller than are predicted by
the abrupt-discommensuration model. The spatial variation of the phase angle whenns = 0.3
is shown schematically in figure 6 where it is compared with the plane-wave limitns = 1 and
the abrupt-discommensuration limitns = 0. The variation of the phase forns = 0.3 is very
reasonably described by a single Fourier component as shown in figure 5 corresponding to
only I = 0 andI = −1 components for the scattering.
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4.3. Debye–Waller factors

The Debye–Waller factor for incommensurably modulated phases was first discussed by
Overhauser [43] who suggested that themth-order satellites would have a Debye–Waller
factor of the form exp(−m2〈φ〉2)where〈φ〉2 is the mean square fluctuation of the phase of the
wave. This result is surprising, because unlike the conventional Debye–Waller factor it does
not depend on the wave-vector transferQ and the result strongly reduces the intensity from the
higher-order satellites. Axe [44] considered the problem in more detail and showed that the
phase fluctuations give displacements which vary with the atomic position such that it acts as
a coupling between the scattering for differentm-values, and proposed that the Debye–Waller
factor might be better approximated by exp(−m(m − 1)〈φ2〉). Both of these analyses have
used the nearly plane-wave formalism appropriate to temperatures close toTI , and we are
unaware of any detailed studies of the Debye–Waller factor close toTL.

The Debye–Waller factor arising from the phase fluctuations will certainly vary with
position throughout the discommensuration lattice. Nevertheless, it can be discussed assuming
that the fluctuations increase the width of the discommensurations due to their fluctuations in
position. The fluctuation effects on the properties of the discommensuration lattice were
discussed by Bruceet al [8] and by Fisher and Fisher [45] for short-range interactions. For a
single discommensuration the thermal fluctuations increase the fluctuation in the position of the
discommensuration at temperatures above the roughening transition, logarithmically with the
area of the discommensuration. When there is a lattice of discommensurations they interact and
there is a corresponding fluctuation interaction which decreases exponentially with the distance
between the discommensurations, while the width of the discommensurations remains finite
[46]. As a result the fluctuations are not expected to alter the critical properties of the phase
transition. The discommensuration lattice also interacts with the elastic strains and this [8,47]
causes a long-range attractive interaction, so the lock-in transition is of first order.

5. Summary

Measurements have been made of the x-ray scattering from Rb2ZnCl4 close to the lock-in
transition of the incommensurably modulated phase and the commensurate ferroelectric phase.
The intensities of the superlattice peaks of the satellites have been measured in several Brillouin
zones and the experimental results are similar to those obtained by others [11,26,30].

The results have been analysed so as to determine whether a model of regularly spaced
discommensurations is consistent with the measurements. This model predicts that the ratios
of the satellite intensities should be the same in each Brillouin zone. The experimental results
show that this is not the case. At least part of the reason for the differences is the occurrence
of diffraction harmonics of the primary sinusoidal component of the structure. These were
calculated from the structure determination [23] of the modulated structure and shown to
account for some of the largest differences in the intensity ratios. Nevertheless, the exp-
erimental results show that the higher-order satellites are much less intense than is predicted
for the abrupt-discommensuration model withb � λ.

The data for theI = −1 orm = 2 satellite can be described at least approximately by the
discommensuration model butns is then about 0.3 atTL. The intensities of the other satellites
with I = −2, 1 or 2 differ from one Brillouin zone to another—table 2—in a way that suggests
that the displacements of the atoms cannot be described by a single overall phase modulation
as is inherent in the discommensuration model.

The temperature dependence of the inverse spacing between the discommensurations,
1/b, is shown in figure 4 together withns which is considerably different when deduced from
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x-ray [26] or magnetic resonance measurements [42]. Using the latter values ofns and our
measurements of 1/b suggests that the discommensuration width is temperature independent
and about 0.57c. The spacing between the discommensurations is about 5c atTL.

These results show that the abrupt-discommensuration model withb � λ does not provide
a good description of the scattering even close toTL. ns is about 0.25 when a first-order
transition occurs. Possibly the transition occurs due to the attractive coupling of the dis-
commensurations through the elastic interaction while the width of the discommensurations
may arise from the thermal fluctuations in their positions. It is certain that the abrupt-dis-
commensuration model does not describe the weaker higher harmonics observed in the x-ray
scattering and is a poor description of the scattering.

We suggest that this structural lock-in transition is not well described by the simple dis-
commensuration model and that further experiments should be performed on lock-in transitions
occurring at lower temperatures and with less coupling to strains.
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